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Hybrid approach combining large eddy simulation (LES) with the Reynolds-averaged Navier–Stokes
equation (RANS) is expected to accurately simulate wall-bounded turbulent flows at high Reynolds num-
bers. As an important issue in developing hybrid methods, it is known that the log layers in the RANS and
LES regions are not lined up in hybrid RANS/LES simulations of channel flow. Although several methods
including additional filtering near the RANS/LES interface have been proposed to eliminate the log-layer
mismatch, there is no obvious physical justification for the methods and some ad hoc tuning is necessary.
In this work, the commutation error terms in the filtered velocity equations are investigated to justify the
method of additional filtering. It is shown that the additional filtering can be considered as a finite differ-
ence approximation to extra terms due to the non-commutivity between the hybrid filter and the spatial
derivative. Moreover, an expression determining the filter width and its location for the additional filter-
ing is obtained. To validate the expression, a hybrid simulation of channel flow is carried out. The addi-
tional filtering with the filter width derived is shown to be effective in eliminating the log-layer
mismatch and improving the mean velocity profile.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Reynolds-averaged Navier–Stokes equation (RANS) models have
been widely used for simulations of turbulent flows at high Rey-
nolds numbers (Hanjalic, 2005). Various RANS models have been
proposed and improved; they accurately predict simple equilib-
rium flows. However, unsteady behavior of non-equilibrium flows
cannot be adequately reproduced by RANS. As an alternative, large
eddy simulation (LES) has been developed to successfully predict
non-equilibrium flows. The rapid development of computer has en-
abled the LES of practical engineering flows in relatively complex
geometries. Nevertheless, it is still impossible to simulate wall-
bounded flows at high Reynolds numbers with the no-slip bound-
ary condition. This limitation is because a large number of grid
points are required to resolve small vortex structures near the wall.

To simulate high-Reynolds-number wall-bounded flows more
accurately, hybrid approaches have been proposed that combine
LES with RANS. A RANS model is solved near the wall with the
no-slip boundary condition whereas LES is carried out away from
the wall. Detached eddy simulation (DES) proposed by Spalart et
al. (1997) is one of hybrid simulations for massively separated
flows. In DES, the Spalart–Allmaras RANS model (Spalart and Allm-
aras, 1994) is extended to an LES model; the simulation is switched
ll rights reserved.
from RANS to LES by comparing the distance from the wall with the
local grid spacing. In addition to DES, several hybrid simulations
were proposed. When the Smagorinsky model is used for LES, it is
natural to adopt a zero-equation model for RANS such as Cebeci-
Smith and Baldwin-Lomax models for aerodynamics flows (Georgi-
adis et al., 2003; Kawai and Fujii, 2005). For more general flows,
one-equation and two-equation RANS models need to be adopted
such as k–l, k–x, and k–e models (Davidson and Peng, 2003; Hamba,
2003; Batten et al., 2004; Tucker and Davidson, 2004; Davidson and
Dahlström, 2005; Temmerman et al., 2005; Abe, 2005; Schiestel and
Dejoan, 2005; Befeno and Schiestel, 2007; Breuer et al., 2008).

Although these hybrid approaches are the same in the sense
that RANS and LES are combined, the objective of DES is somewhat
different from others. In DES, the RANS model was originally devel-
oped to accurately predict the attached boundary layer around a
object such as an airplane wing. In order to successfully predict un-
steady behavior of the separated region away from the object, the
simulation is switched to LES outside the attached boundary layer.
Therefore, the whole attached boundary layer should be simulated
by RANS and only the separated flow is calculated by LES; the mod-
el is switched at the edge of the attached boundary layer. On the
other hand, other hybrid simulations were often developed for bet-
ter wall modeling of LES. Since LES is expected to accurately pre-
dict turbulent flows, it is applied to most of the computational
region including the attached boundary layer. Only in the near-
wall region where the grid spacing is too large to capture the small
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structure, a RANS model is used as an accurate wall model for LES;
the model is switched inside the attached boundary layer. There-
fore, the location of the RANS/LES interface in DES should be differ-
ent from that in the wall-modeled LES. However, there seems to be
some confusion between DES and the other approaches (Spalart
et al., 2006). One of the reason for the confusion is that in the ori-
ginal DES, the model can be switched inside the boundary layer for
some fine grid in spite of the objective of DES. In fact, Nikitin et al.
(2000) showed results of the LES of channel flow in which DES is
used as a wall model and the RANS/LES interface is set inside the
boundary layer. Recently, Spalart et al. (2006) proposed the de-
layed DES to simulate the whole boundary layer by RANS for any
type of grid. The delayed DES clarifies the standpoint of DES rela-
tive to the wall-modeled LES.

There are several important issues in developing hybrid meth-
ods. For example, Nikitin et al. (2000) reported that in the DES-
based wall-modeled LES of channel flow, an unphysical buffer layer
appears near the RANS/LES interface and the log layers in the RANS
and LES regions are not lined up. Owing to the log-layer mismatch
the skin-friction coefficient is underpredicted by approximately
15% in most cases. Using a similar method, Radhakrishnan et al.
(2006) carried out the wall-modeled LES of non-equilibrium flows
such as the flow past a bump and examined the RANS/LES interface
dynamics. They found that the skin-friction coefficient is underpre-
dicted in the equilibrium upstream region whereas the perfor-
mance is improved in the non-equilibrium region after the
separation. The log-layer mismatch was also reported in other hy-
brid simulations. In a hybrid simulation using the k–x model
(Davidson and Peng, 2003), the mean velocity profile shows a kink
at the interface. In another hybrid simulation using the k–e model
(Hamba, 2001), similar log-layer mismatch is seen although the
positions of the RANS and LES regions are reversed compared to
the normal hybrid method. Therefore, the log-layer mismatch is
a problem commonly seen in hybrid simulations.

In the natural DES approach, the log-layer mismatch is not
apparent because the whole boundary layer is simulated by RANS
only. On the other hand, it can be a serious problem for the wall-
modeled LES. It is important to understand the reason for the
log-layer mismatch and to develop a method for eliminating it.
Piomelli et al. (2003) applied a stochastic back-scatter model to
the DES-based wall-modeled LES of channel flow. They showed
that the model is effective in improving the prediction of the mean
velocity profile. Using the mixing-length and k–e models for RANS,
Hamba (2003, 2006) carried out hybrid simulations of channel flow
and introduced additional filtering at the interface to reduce the
log-layer mismatch. Although these methods were shown to be
effective, the amplitude of the stochastic forcing and the width of
the additional filtering need to be determined empirically. Re-
cently, Keating and Piomelli (2006) proposed a dynamic method
to determine the forcing amplitude by considering the difference
between the resolved and modeled shear stresses in the transition
region. Although the log-layer mismatch is removed, the magni-
tude of the stochastic forcing is very large; it is not yet clear
whether such a stochastic forcing is justified physically. As other
approaches, Davidson and Dahlström (2005) proposed to add tur-
bulent fluctuations, obtained from the direct numerical simulation
(DNS), to the momentum equation. Temmerman et al. (2005) found
that by feeding the instantaneous value of the eddy-viscosity coef-
ficient at the interface, the anomaly of the mean velocity profile
diminished. Larsson et al. (2007) used an additional forcing to
investigate the behavior of the artificial buffer layer and proposed
a low-dimensional forcing model. In the limited-numerical-scale
approach proposed by Batten et al. (2004), synthetic turbulence
is generated to automatically convert the statistical turbulent en-
ergy in the RANS region into resolved-scale velocity fluctuations
in the LES region through interface.
In usual zonal hybrid approach, the location of the RANS/LES
interface is clearly defined. In contrast, Breuer et al. (2008) used
the local value of modeled turbulent energy as switching condi-
tion; the interface location is determined dynamically and fluctu-
ates in space and in time. They compared results obtained from
the dynamical interface with that from the sharp interface in chan-
nel and hill flows. On the other hand, non-zonal hybrid approach
has also been developed which seamlessly bridges RANS and LES.
Schiestel and Dejoan (2005) derived a new equation for the energy
dissipation rate for LES and applied a non-zonal hybrid k–� model
to homogeneous turbulence and channel flow. This non-zonal hy-
brid model was also applied to shearless mixing layer (Befeno and
Schiestel, 2007) and to thermal convection at high Rayleigh num-
bers (Kenjereš and Hanjalić, 2006).

The problem of the solution discontinuity at the interface is not
restricted to the RANS/LES method, but also holds for multi-resolu-
tion LES (Quéméré et al., 2001). Both RANS/LES and multi-resolu-
tion LES can be seen as particular cases of a general multi-
domain/multi-resolution method (Sagaut et al., 2006). Using the
interface condition originally developed for multi-resolution LES,
Quéméré and Sagaut (2002) carried out RANS/LES simulations of
the plane channel and the plane plate with a trailing-edge config-
urations. On the basis of the multi-resolution LES, other RANS/LES
approaches were also developed in which the mean flow is com-
puted using RANS while resolved fluctuations are derived from
LES (Labourasse and Sagaut, 2002; Benarafa et al., 2006).

In order to justify and improve hybrid approaches it is neces-
sary to investigate the method of combining RANS with LES from
a theoretical point of view. Recently, Germano (2004) defined a hy-
brid RANS/LES filter and formulated the filtered velocity equations.
He showed that several extra terms appear in the filtered Navier–
Stokes and continuity equations because of the non-commutivity
between the hybrid filter and the spatial derivative. The extra
terms can have non-zero values near the RANS/LES interface
although they are neglected in hybrid simulations. Therefore, we
expect that the investigation of the commutation error gives a clue
to improving the hybrid approaches including the stochastic forc-
ing and the additional filtering.

In this work, we examine the extra terms due to the non-com-
mutivity to physically justify the additional filtering at the inter-
face. In the following section, we briefly explain the log-layer
mismatch and the additional filtering in channel flow simulation.
In Section 3, we introduce a two-dimensional filtering with the fil-
ter width ranging from the grid size to the RANS length scale. We
examine the filtered continuity and Navier–Stokes equations and
investigate the relation between the additional filtering and the ex-
tra terms due to the non-commutivity. We also obtain an expres-
sion determining the filter width and its location for the
additional filtering. In Section 4, we apply the expression to a hy-
brid simulation of channel flow to assess its validity. Concluding
remarks are given in Section 5.
2. Log-layer mismatch and additional filtering

It is known that in hybrid RANS/LES simulations of channel
flow, an unphysical buffer layer appears near the RANS/LES inter-
face and the log layers in the RANS and LES regions are not lined
up (Davidson and Peng, 2003; Hamba, 2003; Nikitin et al., 2000;
Piomelli et al., 2003). A mechanism for the log-layer mismatch
can be described as follows (Hamba, 2003, 2006; Piomelli et al.,
2003). In the RANS region near the wall, the resolved velocity fluc-
tuations are weak and their length scale is large owing to the large
turbulent viscosity. Ideally, intense small-scale fluctuations of the
resolved velocity field should be quickly recovered as the wall-nor-
mal coordinate increases across the RANS/LES interface; the re-
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solved velocity fluctuations should be dominant in the LES region.
However, the velocity field in the RANS region can non-locally af-
fect the velocity field at the bottom of the LES region (Hamba,
2005). In fact, the so-called super-streaks, or large regions of strong
positive and negative streamwise velocity fluctuations in the RANS
region are still observed at yþ ’ 1000 in the LES region where yþ is
the wall-normal coordinate in wall unit (Piomelli et al., 2003). Con-
sequently, the velocity fluctuations at the bottom of the LES region
are reduced artificially and their length scale is too large; the re-
solved shear stress is underpredicted compared to that in standard
LES. On the other hand, the total of the resolved, modeled, and vis-
cous stress terms needs to be equal to the constant pressure-gradi-
ent term in the mean velocity equation. This balance requires that
the modeled and viscous stress terms should have larger values.
Since the modeled and viscous stresses are proportional to the
mean velocity gradient, it has to be overpredicted near the inter-
face, leading to an unphysical buffer layer.

Several attempts have been made to eliminate the log-layer
mismatch (Hamba, 2003, 2006; Davidson and Dahlström, 2005;
Temmerman et al., 2005; Piomelli et al., 2003; Keating and Piomel-
li, 2006). Stochastic forcing is a candidate for generating intense
small-scale fluctuations of the resolved velocity field to diminish
the unphysical buffer layer. Piomelli et al. (2003) introduced a sto-
chastic back-scatter model; they added a forcing term fi to the
momentum equation. The forcing is obtained from a series of
Gaussian random numbers and its amplitude envelope is given by

f ðyÞ ¼ A
ðkyÞ2

1þ ðkyÞ4
; ð1Þ

where k ¼ 30 is chosen for the peak of f ðyÞ to be located near the
RANS/LES interface and the amplitude A is determined empirically.
As a result, the stochastic forcing can break up the super-streaks
and generate smaller scales near the interface; the log-layer mis-
match can be eliminated.

On the other hand, Hamba (2003) introduced additional filter-
ing at the RANS/LES interface to remove the log-layer mismatch.
In this method, stochastic forcing is not applied but two different
velocity components are introduced at the interface. Fig. 1 shows
grid cells and velocity components near the RANS/LES interface;
only the x–y plane is shown for simplicity. The variables x, y, and
z denote the coordinates in the streamwise, wall-normal, and span-
wise directions, respectively; corresponding components of the re-
solved velocity field are given by �u, �v , and �w. In the x–z planes at
yþA < yþ < yþB , additional filtering denoted by b� is introduced to de-
fine two different velocities �u and �̂u. For example, the discretized
forms of the continuity equation for cells ði; jÞ and ði; jþ 1Þ shown
in Fig. 1 can be written as
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Fig. 1. Grid cells and velocity components near the RANS/LES interface in the
method of additional filtering.
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where indices i and j denote the nodes in the x and y directions,
respectively, Dy is the grid spacing in the y direction, and discret-
ized forms of the x- and z-derivatives are omitted. These equations
mean that the component �v i;jþ1=2 at the interface is referred to from
cell ði; jþ 1Þ in the LES region whereas �̂v i;jþ1=2 is referred to from cell
ði; jÞ in the RANS region. Because of the additional filtering, the fluc-
tuation of �̂v i;jþ1=2 is weak and its length scale is large compared to
those of �v i;jþ1=2. It is expected that the underprediction of the inten-
sity of �v i;jþ1=2 can be corrected by distinguishing the two compo-
nents. The same filtering is also applied to the convection terms
in the Navier–Stokes equation such as cuv at point ðiþ 1=2; jþ
1=2Þ. As a result, the log-layer mismatch can be reduced and good
velocity profiles are obtained (Hamba, 2003, 2006).

Let us mention the conservation properties of the government
equations. In Eqs. (2) and (3), different components �̂v i;jþ1=2 and
�v i;jþ1=2 are defined at point ði; jþ 1=2Þ; mass is not conserved lo-
cally. This is because the filter width, or the length scale for local
volume average, is different between cells ði; jÞ and ði; jþ 1Þ. How-
ever, since the relation h �̂v i;jþ1=2i ¼ h�v i;jþ1=2i holds where h�i denotes
the x–z plane average, mass is conserved globally. The same holds
for the convection terms; the global conservation of momentum is
satisfied as hcuv iþ1=2;jþ1=2i ¼ huv iþ1=2;jþ1=2i.

It was shown that the two methods described here are effective
in eliminating the log-layer mismatch. However, there is no obvi-
ous physical justification for the methods and ad hoc tuning of
the forcing amplitude or the filter width is required. Recently,
Keating and Piomelli (2006) proposed a dynamic method to deter-
mine the forcing amplitude for the back-scatter model. They con-
sidered the difference between the resolved and modeled shear
stresses in the transition region and determined the amplitude
using a control parameter. Although the log-layer mismatch is re-
moved, the magnitude of the stochastic forcing is fairly large; its
root-mean-square (RMS) value is up to 80% of the RMS of d�ui=dt
near the interface. It is not yet clear whether such a strong forcing
is justified physically. Further investigation is needed for the meth-
ods of the stochastic forcing and the additional filtering.
3. Commutation error in filtered equations

In this section, in order to justify the additional filtering and to
derive an expression determining the filter width bD for it, we
examine the commutation error in the filtered Navier–Stokes and
continuity equations.

Germano (2004) proposed a hybrid RANS/LES filter defined as

�uk ¼ ð1� aGÞ�uLES
k þ aGhuki; ð4Þ

where ��LES denotes the LES filter and h�i denotes the Reynolds aver-
age. The hybrid filter represents LES for aG ¼ 0 and RANS for aG ¼ 1.
The blending parameter aG ð0 6 aG 6 1Þ is a function of the local po-
sition and can be chosen arbitrarily. Applying the hybrid filter he
derived the filtered Navier–Stokes and continuity equations. For
example, the velocity gradient in the equations is written as

@uk

@xm
¼ @�uk

@xm
þ @aG

@xm
ð�uLES

k � hukiÞ: ð5Þ

The second term on the right-hand side is an extra term due to the
non-commutivity between the hybrid filter and the spatial deriva-
tive. Several extra terms appear in the filtered Navier–Stokes and
continuity equations; the neglect of the extra terms in previous hy-
brid simulations may be responsible for inaccurate velocity profiles.



F. Hamba / International Journal of Heat and Fluid Flow 30 (2009) 20–31 23
Although this theoretical formulation must be important, its appli-
cation is not easy; the evaluation of the LES velocity �uLES

k from the
hybrid filtered velocity �uk must be ill-posed for aG ’ 1 because
�uk ’ huki as mentioned in Germano (2004).

Similar extra terms due to the non-commutivity between the fil-
tering and the spatial derivative also appear in the equations for
conventional LES (Fureby and Tabor, 1997; Fureby et al., 1997). It
is interesting to consider the hybrid simulation as an LES with the
filter width ranging from the grid size to the RANS length scale. In
general, the gradient of the filter width for conventional LES is
not very steep and the commutation error can usually be neglected.
On the other hand, the extra terms cannot be neglected in the hy-
brid simulation because the filter width changes rapidly across
the RANS/LES interface. Here, in order to investigate the effect of
the extra terms, we assume that the hybrid filter in a channel flow
can be given by the following two-dimensional filtering:

�ukðxÞ ¼
Z Z

dx0dz0Gðx� x0; z� z0;aÞukðx0Þ; ð6Þ

where the filter function G is given by

Gðx; z;aÞ ¼ 6
p‘x‘z

exp �6
x2

‘2
x

þ z2

‘2
z

 ! !
; ð7Þ

‘x ¼
‘Dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2 þ Dz2
p ; ‘z ¼

‘Dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dz2
p ; ð8Þ

‘ ¼ a‘R: ð9Þ

Here a is the blending parameter and ‘R is the RANS length scale as
long as the integral scale. The parameter a varies from
aLð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dz2
p

=‘RÞ to unity; the hybrid filter represents LES for
a ¼ aL and RANS for a ¼ 1. The velocity gradient in the filtered
equations can then be written as

@uk

@xm
¼ @�uk

@xm
� @a
@xm

Z Z
dx0dz0

@G
@a

ukðx0Þ ¼
@�uk

@xm
� @a
@xm

@�uk

@a
: ð10Þ

Strictly speaking, the RANS corresponds to ‘ð¼ a‘RÞ ! 1 in this case
because the x–z plane average can be considered as the Reynolds
average for a channel flow. Here, we assume that ‘R is so large that
the filtering witha ¼ 1 can be approximated as the Reynolds average.
We believe that this approximation is not too bad because the second
term on the right-hand side of Eq. (10) can be shown to correspond to
the extra term in Germano’s hybrid filter in Eq. (5) as follows:

@�uk

@a
¼

�ukja¼1 � �ukja¼aL

1� aL
’ huki � �uLES

k ; ð11Þ

where aL � 1 is assumed. Of course, it is not clear whether an LES
with the RANS length-scale filtering actually represents the RANS.
The definition of a spatial average equivalent to the Reynolds aver-
age in general flows is a difficult issue and remains as future work.
We should note that we do not explicitly apply the filtering given by
Eq. (6) to actual simulations; we introduced this filtering in order to
examine the relation between the additional filtering and the extra
term due to the non-commutivity.

The filtered continuity and Navier–Stokes equations are written
as

@uk

@xk
¼ @

�uk

@xk
� @a
@xk

@�uk

@a
¼ 0; ð12Þ

and

@�uk

@t
¼ �@ukum

@xm
� @p
@xk
þ m

@2uk

@xm@xm

¼ � @

@xm
ukum þ

@a
@xm

@ukum

@a
� @�p
@xk
þ @a
@xk

@�p
@a
þ m

@2�uk

@xm@xm
þ Rk;

ð13Þ
respectively, where p is the pressure, m is the kinetic viscosity, and
Rk denotes extra terms associated with the viscous diffusion term.
We should note that Eqs. (12) and (13) are exact equations for the
filtered velocity when the filter function depends on a parameter
a in general (Fureby and Tabor, 1997). Here, we examine the conti-
nuity equation (12). For simplicity, we assume that the blending
parameter a depends only on the y coordinate and @a=@y < 0. This
profile of a corresponds to the lower half of a channel flow. The
terms related to the y derivative in Eq. (12) are then written as

@v
@y
¼ @

�v
@y
� @a
@y

@�v
@a

: ð14Þ

A second-order finite-difference form of the right-hand side can be
written as

@�v
@y
� @a
@y

@�v
@a

� �
i;j

¼
�v i;jþ1=2 � �v i;j�1=2

Dy
� ajþ1=2 � aj�1=2

Dy

�
½Gðajþ1=2Þ � v�i;j � ½Gðaj�1=2Þ � v �i;j

ajþ1=2 � aj�1=2
; ð15Þ

where

Gðajþ1=2Þ � f ¼ dx0dz0Gðx� x0; z� z0;ajþ1=2Þf ðx0Þ: ð16Þ

In Eq. (15), a central difference scheme is used for @G=@a, which is
evaluated at point ði; jÞ. By applying the following approximations:

½Gðajþ1=2Þ �v�i;j¼f½Gðajþ1=2Þ�v �i;jþ1=2þ½Gðajþ1=2Þ�v �i;j�1=2g=2; ð17Þ
1
2
½Gðajþ1=2ÞþGðaj�1=2Þ� �v ¼GðajÞ �v ; ð18Þ

we obtain a more compact form given by

@�v
@y
� @a
@y

@�v
@a

� �
i;j
¼

�vþi;jþ1=2 � �v�i;j�1=2

Dy
; ð19Þ

where

�vþi;jþ1=2 ¼ ½GðajÞ � v �i;jþ1=2; ð20Þ
�v�i;j�1=2 ¼ ½GðajÞ � v �i;j�1=2: ð21Þ

In the definition of �vþi;jþ1=2, the location of the blending parameter aj

is different from that of ajþ1=2 used for the original component
�v i;jþ1=2. The same holds for aj in the definition of �v�i;j�1=2. Since
aj > ajþ1=2, the velocity �vþi;jþ1=2 is closer to the RANS velocity
hvii;jþ1=2 than �v i;jþ1=2 is; that is, the fluctuation level of �vþi;jþ1=2 is low-
er than that of �v i;jþ1=2. In contrast, since aj < aj�1=2, the velocity
�v�i;j�1=2 is closer to the LES velocity �vLES

i;j�1=2 than �v i;j�1=2 is; that is,
the fluctuation level of �v�i;j�1=2 is higher than that of �v i;j�1=2. We
can consider �vþi;jþ1=2 as a kind of filtered value of �v i;jþ1=2 and �v�i;j�1=2

as a kind of defiltered value of �v i;j�1=2. In our preliminary simulation
of channel flow, we used finite difference forms of the filtered and
defiltered terms in Eq. (19). However, a statistically steady solution
was not obtained because the defiltering scheme was numerically
unstable. The defiltering problem must be badly conditioned near
the RANS/LES interface because aj � aj�1=2 is not small.

In order to avoid the defiltering, we propose another form of
approximation to Eq. (14)

@�v
@y
� @a
@y

@�v
@a

� �
i;j

¼
�v i;jþ1=2 � �v i;j�1=2

Dy
� ajþ1=2 � aj�1=2

Dy

�
½Gðajþ1=2Þ � v �i;jþ1=2 � ½Gðaj�1=2Þ � v�i;jþ1=2

ajþ1=2 � aj�1=2

¼
�vþþi;jþ1=2 � �v i;j�1=2

Dy
; ð22Þ

where

�vþþi;jþ1=2 ¼ ½Gðaj�1=2Þ � v�i;jþ1=2: ð23Þ
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In Eq. (22), the term @G=@a is evaluated at point ði; jþ 1=2Þ where
ai;jþ1=2 < ai;j; it is a kind of forward difference scheme of @G=@a. As
a result, the filtered value �vþþi;jþ1=2 is used at point ði; jþ 1=2Þwhereas
the defiltered value is not necessary at point ði; j� 1=2Þ. We can see
that Eq. (22) takes the same form as the second term on the left-
hand side of Eq. (2) discussed in the preceding section; the velocity
�vþþi;jþ1=2 in Eq. (22) corresponds to �̂v i;jþ1=2 in Eq. (2).

In actual simulations the continuity equation is used to derive
the Poisson equation for the pressure and the latter equation is
solved. The filtered Navier–Stokes equation given by Eq. (13) can
be rewritten as

@�uk

@t
¼ � @�p

@xk
þ Fk; ð24Þ

where Fk is the remaining part that does not involve the pressure.
Here, the term containing @�p=@a is neglected as will be explained
in the next section. Taking the divergence of Eq. (24) with Eq.
(22) we have

@2�p
@x2 þ

@2�p
@z2

 !
i;j

þ 1
Dy

@�pþþ

@y

� �
i;jþ1=2

� @�p
@y

� �
i;j�1=2

" #

¼ @Fx

@x
þ @Fz

@z

 !
i;j

þ 1
Dy
ðFþþy Þi;jþ1=2 � ðFyÞi;j�1=2

h i
: ð25Þ

This modified Poisson equation for the pressure is solved so that the
continuity Eq. (12) can be satisfied.

The additional filtering applied to the convection term in the
Navier–Stokes equation can be written in a similar form to Eq.
(22). For example, in Eq. (13) for �uiþ1=2;j, one of the convection term
can be given by

@uv
@y
� @a
@y

@uv
@a

� �
iþ1=2;j

¼
uvþþiþ1=2;jþ1=2 � uv iþ1=2;j�1=2

Dy
; ð26Þ

where

uvþþiþ1=2;jþ1=2 ¼ ½Gðaj�1=2Þ � uv �iþ1=2;jþ1=2: ð27Þ

Eq. (26) is also the same form as the convection term used in Hamba
(2003).

Moreover, using the property of the Gaussian function we can
rewrite Eq. (23) as

�vþþi;jþ1=2 ¼ G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

j�1=2 � a2
jþ1=2

q� �
� Gðajþ1=2Þ � v

h i
i;jþ1=2

¼ G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

j�1=2 � a2
jþ1=2

q� �
� �v

h i
i;jþ1=2

: ð28Þ

This expression gives the relation between �vþþi;jþ1=2 and �v i;jþ1=2; the
former can be obtained from the latter by applying two-dimen-
sional filtering with the filter widthbDjþ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

j�1=2 � a2
jþ1=2

q
‘Rjþ1=2: ð29Þ

This is indeed the expression determining the filter width and its
location for the additional filtering. Therefore, the additional filter-
ing proposed by Hamba (2003) can be considered as a finite differ-
ence approximation to the commutation error terms and a specific
expression for the filter width bD is obtained.

Here, let us mention a possible relation between the defiltered
term described above and stochastic forcing proposed by other hy-
brid simulations (Davidson and Dahlström, 2005; Piomelli et al.,
2003). Paying attention to the defiltered term, we can derive an-
other form of the convection term in the Navier–Stokes equation as

@uv
@y
� @a
@y

@uv
@a

� �
iþ1=2;j

¼ uv iþ1=2;jþ1=2 � uv iþ1=2;j�1=2

Dy

þ
uv iþ1=2;j�1=2 � uv��iþ1=2;j�1=2

Dy
; ð30Þ
where

uv��iþ1=2;j�1=2 ¼ ½Gðajþ1=2Þ � uv �iþ1=2;j�1=2: ð31Þ

The second term on the right-hand side of Eq. (30) is an extra term
involving the defiltered term. The defiltering in general enhances
the velocity fluctuations with short length scales. The stochastic
forcing with no spatial correlation also increases small-scale fluc-
tuations. In this sense, the stochastic forcing plays a similar role
to the defiltering term in Eq. (30). It is interesting to note that
the second term on the right-hand side of Eq. (30) vanishes when
the Reynolds average is taken because huv��iþ1=2;j�1=2i ¼ huviiþ1=2;j�1=2.
The forcing in the back-scatter model of Piomelli et al. (2003) has
zero mean value whereas the net forcing of Davidson and Dahl-
ström (2005) is positive in the streamwise direction. The vanishing
of the mean value of the extra term in Eq. (30) suggests that a
forcing with zero mean value like Piomelli et al. (2003) is more
appropriate.

In the multi-resolution LES, Quéméré et al. (2001) proposed a
method for connecting two domains having different resolutions.
The restriction and enrichment procedures for variables at the
interface correspond to filtering and defiltering, respectively. It
must be interesting to apply the additional filtering in the present
work to the restriction procedure at the interface as �̂uLES

k ¼ �uRANS
k ,

which is easier to interpret. On the other hand, in their RANS/LES
simulation (Benarafa et al., 2006) added the following body force
to the momentum equations:
f RANS=LES
i ¼Wi

uRANS
i � ~uLES

i

aBDt
; ð32Þ

where Wi is a weight function so that the forcing term adapts to the
velocity component, ~� is a spatial average, and aB is a relaxation
parameter. This forcing was introduced so that the averaged LES
velocity field can match the RANS velocity field computed in ad-
vance. Although the purpose of the procedure is different from ours,
the operator ~� seems to play a similar role to the additional filtering
as a filtering procedure.

The additional filtering discussed in this section is valid for
channel flow, in which the turbulent field is homogeneous in
the x and z directions. More general methods need to be devel-
oped for practical simulations of complex flows. Here, we discuss
a possible method to generalize the additional filtering. First, the
finite difference scheme of the filtered equations can be extended
as follows. When the distribution of ‘ and ‘R is given in advance,
that of the blending parameter is obtained from a ¼ ‘=‘R. As an
example, we treat the case of a ¼ aðx; yÞ where @a=@x < 0 and
@a=@y < 0. The filtered continuity equation can then be written
as

@�uk

@xk
� @a
@xk

@�uk

@a
¼

�uþþx
iþ1=2;j � �ui�1=2;j

Dx
þ

�vþþy
i;jþ1=2 � �v i;j�1=2

Dy
þ @ �w

@z

� �
i;j
;

ð33Þ

where

�uþþx
iþ1=2;j ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i�1=2;j � a2
iþ1=2;j

q� �
� �u

h i
iþ1=2;j

; ð34Þ

�vþþy
i;jþ1=2 ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i;j�1=2 � a2
i;jþ1=2

q� �
� �v

h i
i;jþ1=2

: ð35Þ

The effect of @a=@xk can be taken into account by the additional fil-
tering at points ði; jþ 1=2Þ and ðiþ 1=2; jÞ as shown in Eq. (34) and
(35), respectively.

Next, we need to define the filtering G for general cases. One
possible way is to extend the plane average given by Eqs. (6)–(9)
to general cases in a straightforward manner as follows:



Table 1
Parameters for 11 runs of channel flow simulation.

Case Res yþA yþB CH Nx Ny Nz Dxþ Dzþ

1 590 151 224 0 64 64 64 58 29
2 590 151 224 1 64 64 64 58 29
3 590 151 224 2 64 64 64 58 29
4 5000 232 346 0 128 132 64 245 245
5 5000 232 346 1 128 132 64 245 245
6 5000 48 55 0 128 132 64 245 245
7 5000 48 55 1 128 132 64 245 245
8 5000 232 346 0 64 132 64 491 245
9 5000 232 346 1 64 132 64 491 245
10 5000 232 346 0 128 132 32 245 491
11 5000 232 346 1 128 132 32 245 491
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�ukðxÞ ¼
Z

x�x0?raðxÞ
dSGðx� x0;aÞukðx0Þ; ð36Þ

Gðx;aÞ ¼ 6
p‘2 exp �6

jxj2

‘2

 !
; ‘ ¼ a‘R: ð37Þ

In Eq. (36), the integral is taken over a plane perpendicular to the
direction of ra. The turbulent field is not always homogeneous
over this plane, but the plane is located along the RANS/LES inter-
face locally. We should note that the hybrid filter defined as Eqs.
(6)–(9) was introduced to just bridge RANS and LES near the inter-
face using the additional filtering (and some defiltering if possible);
the definition of the hybrid filter is not directly used in the simula-
tion in the RANS and LES regions. Therefore, we may adopt this
plane average as a coarse graining along the interface just to bridge
the two models.

Another way to define the filtering G for general cases is to
adopt an alternative method corresponding to ensemble average.
It is not easy to formulate such a method; the situation is similar
to the averaging procedure in the dynamic subgrid-scale model
(Meneveau and Katz, 2000). The Lagrangian dynamic model pro-
posed by Meneveau et al. (1996) used averaging over flow pathline
by backwards time integration. Such a generalization of the pres-
ent additional filtering must be interesting. In future work the
additional filtering should be extended so that it apply to more
complex flows including recirculating flows.

4. Application to channel flow simulation

In order to validate the expression for the filter width derived in
the preceding section, we carry out a hybrid RANS/LES simulation
of channel flow. The numerical method is the same as that used by
Hamba (2006). We solve the filtered Navier–Stokes and continuity
equations given by

@�uk

@t
¼ � @

@xm
�um�uk �

@

@xm
smk �

@�p
@xk
þ m

@2�uk

@xm@xm
þ dk1; ð38Þ

@�uk

@xk
¼ 0; ð39Þ

where

skm ¼ ukum � �uk�um; ð40Þ

and dkm is the Kronecker delta symbol. Hereafter, all quantities are
non-dimensionalized by the wall friction velocity us and the chan-
nel half-width Ly=2 except for the wall-unit coordinate. The Rey-
nolds number based on us and Ly=2 is set to Res ¼ 590 or 5000.
The choice of RANS and LES models is an important issue in devel-
oping hybrid methods. However, in this work, we do not try to as-
sess and improve RANS and LES models. We adopt simple models
and concentrate on the treatment of the log-layer mismatch, which
seems to appear irrespective of turbulence model. The Smagorinsky
model is used for LES and the corresponding mixing-length model is
adopted for RANS. These models are desirable because they explic-
itly treat the length scale that can be directly related to the blending
parameter a. The modeled stress skm is expressed as

skm �
1
3
snndkm ¼ �2mT Skm; mT ¼ ðCS‘Þ2

ffiffiffiffiffiffiffiffi
2S2

p
; ð41Þ

where Skm ¼ ð@�uk=@xm þ @�um=@xkÞ=2, S2 ¼ SkmSkm, mT is the eddy vis-
cosity, and CSð¼ 0:1Þ is the Smagorinsky constant. The length scale ‘
is determined as

‘¼
‘R for 0< yþ 6 yþA
DðyþB Þþ ð‘RðyþA Þ�DðyþB ÞÞðyþB �yþÞ=ðyþB �yþA Þ for yþA < yþ < yþB
D for yþB 6 yþ 6 Res

8><>: ;

ð42Þ
where ‘R is the RANS length scale and D is the representative grid
spacing defined as

D ¼ ½ðDx2 þ Dy2 þ Dz2Þ=3�1=2
: ð43Þ

The RANS region is located at 0 < yþ 6 yþA and the LES region is at
yþB 6 yþ 6 Res. We set the buffer region yþA < yþ < yþB to avoid a very
rapid change in the length scale ‘. The value of ‘R is determined in
advance using the DNS data of Moser et al. (1999) for Res ¼ 590 and
the one-dimensional k–e model simulation for Res ¼ 5000 (see
Hamba (2006) for detail).

As shown in Eqs. (12) and (13), the filtered velocity equations
originally involve extra terms due to the non-commutivity be-
tween the hybrid filter and the spatial derivative. In order to incor-
porate the effect of the extra terms into the hybrid simulation, we
apply the additional filtering to the continuity equation and to the
convection terms in the Navier–Stokes equation. The additional fil-
tering is also used when evaluating the modeled and viscous stres-
ses such as �ðmT þ mÞSkm, but it is not applied to the pressure-
gradient term or to the terms of the gradient of modeled and vis-
cous stresses in the Navier–Stokes equation in order to avoid
numerical instability. The reason for the instability is explained
in Appendix.

In the previous simulation (Hamba, 2006), the filter width and
its location for the additional filtering were determined empiri-
cally; they were tuned so that good velocity profiles can be ob-
tained. In the present simulation they are determined on the
basis of the relation (29). In order to obtain better velocity profiles,
we modify Eq. (29) to

bDjþ1=2 ¼ CH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

j�1=2 � a2
jþ1=2

q
‘Rjþ1=2; ð44Þ

where CH is a non-dimensional constant. If the approximation made
in the preceding section is good and Eq. (29) is accurate, CH is equal
to unity. In the case of CH ¼ 0 no additional filtering is applied.

Using the above model equations with and without the addi-
tional filtering, we carry out a hybrid simulation of channel flow.
The size of the computational domain is Lx � Ly � Lz ¼ 2p� 2� p.
The number of grid points is mainly Nx � Ny � Nz ¼ 64� 64� 64
for Res ¼ 590 and Nx � Ny � Nz ¼ 128� 132� 64 for Res ¼ 5000.
The grid number for each run is described in Table 1. The periodic
boundary conditions are used in the x and z directions whereas the
no-slip conditions are imposed at the wall. The governing equa-
tions are discretized using the second-order finite-difference
scheme on a staggered mesh. The time integration is made using
the Crank–Nicolson method for the wall-normal diffusion terms
and the Adams–Bashforth method for the other terms. The compu-
tation was run for a sufficient length of time to be statistically
independent of the initial conditions; then statistics such as the
mean velocity were accumulated over a time period of 15 or 20
normalized by ðLy=2Þ=us. Table 1 shows parameters for 11 runs:
Cases 1–3 for Res ¼ 590 and Cases 4–11 for Res ¼ 5000. The loca-
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Fig. 4. Profiles of the mean velocity and the shear stresses as functions of yþ: (a)
mean velocity h�ui for Cases 1–3 and the DNS result of Moser et al. (1999) and (b) the
resolved, modeled, and viscous shear stresses for Cases 1 and 3.
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tion of the RANS/LES interface in Cases 6 and 7 is different from
that in Cases 4 and 5. No additional filtering is applied when
CH ¼ 0 whereas the additional filtering given by Eq. (44) is applied
when CH ¼ 1 and 2. Compared to Cases 4 and 5, the grid number Nx

is halved and the grid spacing Dxþ is doubled in Cases 8 and 9 while
Nz is halved and Dzþ is doubled in Cases 10 and 11.

First, we show results of Cases 1–3 for Res ¼ 590. Fig. 2a shows
the profiles of the length scales ‘, ‘R, and D as functions of yþ for
Cases 1–3. The length scales are normalized by the channel half
width Ly=2. The RANS length scale ‘R obtained from the DNS data
increases to a large value as yþ increases. On the other hand, the
LES length scale D, or the representative grid spacing given by
Eq. (43) is small and nearly constant. From the two length scales,
‘ is determined using Eq. (42); it decreases rapidly at
yþA < yþ < yþB . The length scale ‘ is closely related to the eddy vis-
cosity because the eddy viscosity is given by Eq. (41). Fig. 2b shows
the profile of the mean eddy viscosity hmTi normalized by m as a
function of yþ for Case 2. Here, h�i denotes averaging over the x–z
plane and in time. The profiles of hmTi for Cases 1 and 3 (not shown
here) are nearly the same as that for Case 2. The eddy viscosity is
large in the RANS region and small in the LES region in Fig. 2b. This
difference in the eddy viscosity is natural because in general, most
of the turbulent fluctuations are modeled in RANS whereas they
are resolved in LES.

The blending parameter is determined as a ¼ ‘=‘R because of Eq.
(9). Fig. 3 shows the profiles of a and bD as functions of yþ for Case 2.
The blending parameter a is equal to unity in the RANS region at
0 < yþ 6 yþA whereas it has a small value in the LES region at
yþB 6 yþ 6 590. Like the length scale ‘, the parameter a also de-
creases rapidly at yþA < yþ < yþB . As a result, the filter width bD given
by Eq. (44) has a large value at 151 6 yþ 6 238. Although bD shows
a non-zero value even in the LES region, the additional filtering is
applied only at 151 6 yþ 6 238 to save computing time.

Fig. 4a shows the profiles of the mean velocity h�ui as a function
of yþ for Cases 1–3. The DNS result of Moser et al. (1999) is also
plotted. The mean velocity is normalized by us for each run. Since
the value of the external pressure gradient is set to unity in Eq. (39)
and statistically steady state is achieved, the value of us is nearly
equal to unity in each run. In Case 1 the additional filtering is
not applied; the mean velocity clearly shows a steep gradient at
yþ ¼ yþB and is overestimated in the LES region as was already re-
ported in several hybrid simulations (Hamba, 2003, 2006; Nikitin
et al., 2000; Piomelli et al., 2003). In Case 2 in which the additional
filtering is applied with CH ¼ 1, the velocity gradient at yþ ¼ yþB is
reduced, but the velocity in the LES region is still overestimated
slightly. In Case 3 in which bD is doubled, a good velocity profile
is obtained. This result shows that the additional filtering with
the filter width given by Eq. (44) is effective in reducing the log-
layer mismatch.

As was discussed in Section 2, it is considered that insufficient
resolved velocity fluctuations near the RANS/LES interface is
a

Fig. 2. Profiles of the length scales and the mean eddy viscosity as func
responsible for the log-layer mismatch (Hamba, 2003, 2006; Piom-
elli et al., 2003). To confirm the explanation, we examine the bal-
b

tions of yþ: (a) ‘, ‘R , and D for Cases 1–3 and (b) hmT i=m for Case 2.
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ance of the terms in the mean velocity equation. In a statistically
steady state the following relation for the shear stresses holds:

1� y ¼ �h�u00�v 00i � hs12i þ m
@h�ui
@y

; ð45Þ

where the three terms on the right-hand side represent the resolved
stress, the modeled stress, and the viscous stress, respectively.
Fig. 4b shows the three terms for Cases 1 and 3. In both cases the
resolved stress shows a small value in the RANS region and a large
value in the LES region. However, the increase in the resolved stress
across the RANS/LES interface in Case 1 is not much enough com-
pared to that in Case 3. At yþ ¼ 238 in the LES region, the resolved
stress in Case 1 is underpredicted although the resolved stress
needs to be nearly equal to 1� y in a statistically steady channel
flow. The underprediction of the resolved stress leads to the over-
prediction of the modeled and viscous stresses and is responsible
for the steep velocity gradient at yþ ¼ yþB . On the other hand, in Case
3 the resolved stress is large enough at yþ ¼ 238 and the velocity
gradient has an appropriate value. Therefore, owing to the addi-
tional filtering the resolved stress at the bottom of the LES region
is restored, eliminating the log-layer mismatch.

Fig. 5 shows the profiles of the streamwise and wall-normal tur-
bulent intensities for Cases 1 and 3. The intensities in the RANS re-
gion are fairly small compared with the DNS result. This is natural
because most of the velocity fluctuations in the RANS region are
represented by the modeled turbulent kinetic energy. As a result,
a peak in the profile of the intensities is present after the yþB posi-
tion. Owing to the additional filtering, the difference in the inten-
sity between the RANS and LES regions becomes greater in Case
3 than in Case 1; this tendency is favorable for the hybrid simula-
tion. It is shown that the underprediction of the resolved shear
stress at yþ ¼ 238 is due mainly to the underprediction of the
wall-normal intensity. In the core region of channel, the intensities
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Fig. 6. Profiles of the mean velocity h�ui as functions
in Case 3 are slightly less than those in Case 1 and the DNS result. It
remains as future work to improve the profiles of turbulent inten-
sities in the whole region.

Next, we show results of Cases 4–7 for Res ¼ 5000. Fig. 6 shows
the profiles of the mean velocity as a function of yþ for Cases 4–7.
In Cases 4 and 5, the RANS/LES interface is set to yþA ¼ 232 and
yþB ¼ 346. In Case 4 the additional filtering is not applied; the mean
velocity shows a steep gradient at yþ ¼ yþB like that in Case 1. Not
only the log layer in the LES region is shifted but also the velocity in
the RANS region at yþ ’ yþA is underpredicted. This underprediction
is a problem specific to the mixing length model adopted in this
work; the reason for the underprediction in Case 4 can be ex-
plained as follows. The RANS length scale ‘R in the mixing-length
model is determined in advance using the one-dimensional solu-
tion of the k–e model in which the resolved velocity field has no
three-dimensional fluctuation. However, in the hybrid simulation,
the resolved velocity fluctuations are not necessarily very small in
the RANS region, leading to inaccurate values of the eddy viscosity
and the mean velocity.

On the other hand, in Case 5 the additional filtering is applied
and the log-layer mismatch is nearly removed. A good profile is ob-
tained even for CH ¼ 1 because the log-layer mismatch in Case 4 is
not as large as that in Case 1. Since the resolved velocity fluctua-
tions are restored in Case 5 (not shown here), the velocity gradient
at yþ ¼ yþB has an appropriate value. The velocity profile in the
RANS region is also improved because the resolved velocity fluctu-
ations decrease due to the additional filtering. We should note that
the steep gradient seen at yþ > 1000 is physical in the wake region
of high-Reynolds-number channel flows (Hamba, 2006; Keating
and Piomelli, 2006). We set Nx ¼ 128 for Res ¼ 5000 because at
lower resolution no wake is predicted due to the low-order fi-
nite-difference scheme used (Hamba, 2006; Keating and Piomelli,
2006; Cabot et al., 1999).
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Fig. 8. Profiles of the blending parameter a and the filter width bD as functions of yþ

for Cases 5 and 7.
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In order to assess the effect of the interface location, the inter-
face in Cases 6 and 7 is set to yþA ¼ 48 and yþB ¼ 55 closer to the
wall. The log-layer mismatch is seen in Case 6 whereas it is re-
moved and a good profile is obtained in Case 7 in Fig. 6b. Compared
to the result of Case 4, the position of the unphysical buffer layer
relative to the RANS/LES interface in Case 6 is somewhat different.
The steep velocity gradient is seen in the region fairly apart from
the interface in Case 6 in contrast to Cases 1 and 4.

To explain the reason for the difference, we examine the length
scales. Fig. 7a shows the profiles of the length scales ‘, ‘R, and D as
functions of yþ for Cases 5 and 7. The RANS (LES) length scale is
common in the two cases. Since the RANS/LES interface is away
from the wall in Case 5, the length scale ‘ decreases rapidly at
yþA < yþ < yþB ; its value at yþA ¼ 232 is much greater that that at
yþB ¼ 346. On the other hand, the RANS/LES interface in Case 7 is
set to the location where ‘R is nearly equal to D. The length scale
‘ is connected at the RANS/LES interface without overshoot, as is
the case of previous DES calculations (Nikitin et al., 2000; Piomelli
et al., 2003).

Fig. 7b shows the profiles of the mean eddy viscosity hmTi as a
function of yþ for Cases 5 and 7. The profiles of hmTi in Fig. 7b are
similar to those of ‘ in Fig. 7a; the eddy viscosity in Case 5 de-
creases rapidly at yþA < yþ < yþB whereas that in Case 7 is connected
without overshoot. The profiles of the eddy viscosity in Cases 4 and
6 (not shown here) are nearly the same as those in Cases 5 and 7,
respectively. The log-layer mismatch is seen not only in Case 4 in
which the eddy viscosity decreases rapidly at the RANS/LES inter-
face, but also in Case 6 in which the eddy viscosity is connected
without overshoot. The unphysical buffer layer in Case 4 is seen
at yþ ¼ yþB where the eddy viscosity decreases rapidly. On the other
hand, the unphysical buffer layer in Case 6 is not seen at the inter-
face where the gradient of the eddy viscosity changes suddenly,
but it is seen at yþ ’ 200 in the LES region apart from the interface.
Therefore, the sudden change in the eddy viscosity or its gradient
at the RANS/LES interface is not necessarily the main reason for
the log-layer mismatch.

Fig. 8 shows the profiles of the blending parameter a and the fil-
ter width bD as functions of yþ for Cases 5 and 7. In Case 5 the
blending parameter decreases rapidly at the interface at
yþA < yþ < yþB like that in Case 1 shown in Fig. 3. On the other hand,
in Case 7 the blending parameter changes very little at
yþA < yþ < yþB , but it decreases gradually as yþ increases in the LES
region apart from the interface. The decrease in a in the LES region
in Case 7 is due to the increase in ‘R; that is, since ‘ð¼ DÞ is nearly
constant and ‘R increases, a decreases gradually in the LES region.
The location of the decrease in a in Fig. 7 corresponds to the loca-
tion of the unphysical buffer layer in Fig. 5. This result is consistent
with the discussion in Section 3 that the extra terms involving the
gradient of a cannot be neglected. It is suggested that the neglect of
the extra terms is responsible for the log-layer mismatch. In this
a

Fig. 7. Profiles of the length scales and the mean eddy viscosity as f
work, to incorporate the effect of the extra terms, the additional fil-
tering is applied with the filter width bD. In Case 5, the filter widthbD has a large value at the RANS/LES interface as shown in Fig. 8. On
the other hand, in Case 7 bD shows a small but non-zero value in the
LES region because the gradient of a has a finite value. Since it
takes much computing time to apply the additional filtering in
the whole LES region, we applied it only at 51 < yþ < 145 in Case
7. Nevertheless, a good velocity profile is obtained in Case 7 as well
as in Case 5 as shown in Fig. 6. This result shows that the expres-
sion for bD given by Eq. (44) is appropriate in both cases where the
eddy viscosity is connected at the interface in a different manner.

Finally, we examine the sensitivity of the results with respect to
the size of the grid cells. As shown in Table 1, the grid spacing in
the streamwise direction is doubled in Cases 8 and 9 and that in
the spanwise direction is doubled in Cases 10 and 11. The size of
the computational domain is unchanged. Fig. 9a shows the profiles
of the mean velocity as a function of yþ for Cases 8–11. In Cases 9
and 11 where CH is set to unity the velocity mismatch is reduced;
the additional filtering is effective in these coarse meshes. How-
ever, the velocity profiles in the core region in Cases 8 and 9 are dif-
ferent from those in Cases 4 and 5 plotted in Fig. 6a. The steep
gradient at yþ > 1000 is not seen in Cases 8 and 9. Due to the
coarse grid in the streamwise direction, no wake is predicted
(Hamba, 2006; Keating and Piomelli, 2006; Cabot et al., 1999).
On the other hand, in Cases 10 and 11, the mean velocity is well
predicted whereas the turbulent intensities in the core region is
poorly predicted. Fig. 9b shows the profiles of the wall-normal
intensity

ffiffiffiffiffiffiffiffiffiffiffi
h�v 002i

p
as a function of yþ in Cases 5, 9, and 11. In Cases

5 and 9 where Dzþ ¼ 245, the intensity decreases monotonically as
yþ increases in the core region. However, in Case 11 where
Dzþ ¼ 491, the intensity begins to increase at yþ ¼ 3800 and
reaches a fairly large value at the channel center. This artificial in-
crease is due to the coarse grid in the spanwise direction. There-
fore, the results in Cases 8–11 are inaccurate and the grid cells
b

unctions of yþ for Cases 5 and 7: (a) ‘, ‘R , and D and (b) hmT i=m.
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with Dxþ ¼ Dzþ ¼ 245 are necessary for accurate simulation of this
channel flow.

The case of Res ¼ 5000 was investigated as an example of high
Reynolds numbers. In the case of low Reynolds number Res < 590,
the mean velocity profile with and without additional filtering is
basically the same as that for Res ¼ 590. However, when Res is so
low that the RANS/LES interface is located within the physical buf-
fer layer between the logarithmic layer and the viscous sub-layer,
the steep gradient due to mismatch is somewhat unclear because it
is overlapped by the gradient of the buffer layer as shown in Case
A1 ðRes ¼ 180Þ plotted in Fig. 2 of Nikitin et al. (2000).

5. Conclusions

It is known that log-layer mismatch appears in hybrid RANS/LES
simulations of channel flow. Although several methods have been
proposed to eliminate the log-layer mismatch, there is no obvious
physical justification for the methods. To justify the method of
additional filtering at the RANS/LES interface proposed by Hamba
(2003), we examined the commutation error in the filtered velocity
equations. A two-dimensional filtering with the filter width rang-
ing from the grid size to the RANS length scale is introduced as a
hybrid filter. The filtered equations involve extra terms due to
the non-commutivity between the filtering and the spatial deriva-
tive. It was shown that the additional filtering can be considered as
a finite difference approximation to the extra terms. We obtained
an expression determining the filter width and its location for
the additional filtering. To validate this expression, a hybrid simu-
lation of channel flow was carried out with the Smagorinsky and
mixing-length models. The unphysical buffer layer is located in
the region where the blending parameter decreases. This result
suggests that the neglect of the extra terms due to the non-com-
mutivity is responsible for the log-layer mismatch. It was shown
that the additional filtering with the filter width derived is effec-
tive in eliminating the log-layer mismatch and this improvement
is because sufficient resolved velocity fluctuations are generated
at the bottom of the LES region.

In the present work, a two-dimensional filtering in the wall-
parallel directions is used as the additional filtering to improve
the hybrid simulation of channel flow. As future work, the method
of additional filtering needs to be extended to general turbulent
flows. Moreover, instead of the mixing length model, more general
models such as the k–e model should be adopted for RANS for prac-
tical hybrid simulations.
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Appendix

The extra terms due to the non-commutivity appear not only
for the convection terms but also for the pressure-gradient and dif-
fusion terms in the Navier–Stokes equation given by Eq. (13). From
a theoretical point of view, the additional filtering should be ap-
plied to all the extra terms. However, in this work, the additional
filtering is not applied when evaluating the gradient of the pres-
sure and those of the modeled and viscous stresses in Eq. (13) to
avoid numerical instability. The reason for the numerical instabil-
ity can roughly be explained as follows.

If the additional filtering is applied to the pressure-gradient
term, it can be written as

@p
@yi;jþ1=2

¼ @�p
@y
� @a
@y

@�p
@a

� �
i;jþ1=2

¼
�̂pi;jþ1 � �pi;j

Dy
: ðA1Þ

In the Poisson equation for the pressure, the second derivative of
the pressure in the y direction can then be expressed as

@2p
@y2

i;j
¼ 1

Dy

^̂�pi;jþ1 � �̂pi;j

Dy
�

�̂pi;j � �pi;j�1

Dy

 !
: ðA2Þ

The Poisson equation is solved using the Fourier transform in the x
and z directions. Hereafter, we omit the dependence on the z coor-
dinate for simplicity. The Fourier component ~f of a physical quan-
tity f can be written as

fi;j ¼
XN=2�1

i0¼�N=2

~f i0 ;j expð2pIii0=NxÞ; ðA3Þ

where I ¼
ffiffiffiffiffiffiffi
�1
p

. The Fourier components of the filtered pressures
appearing in Eq. (A2) can be written as

~̂�pi0 ;j ¼ ĝi0
~�pi0 ;j;

~̂
�̂pi0 ;j ¼ ĝ2

i0
~�pi0 ;j; ðA4Þ

where the filter function ĝi0 is given by

ĝi0 ¼ exp½�ð2pi0=NxÞ2=24�; ðA5Þ

for the Gaussian filter. The left-hand side of the Poisson equation gi-
ven by

@2p
@x2 þ

@2p
@y2

 !
i;j

; ðA6Þ

can be expressed in terms of the Fourier components as

ĝ2
i0

ðDyÞ2
~�pi0 ;jþ1 � k2

i0 þ
2ĝi0

ðDyÞ2

" #
~�pi0 ;j þ

1

ðDyÞ2
~�pi0 ;j�1; ðA7Þ

where

ki0 ¼
2
Dx

sinðpi0=NxÞ: ðA8Þ
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In order to solve the tridiagonal system of equations keeping the
round-off errors down, the coefficient for ~�pi0 ;j needs to be greater
than the sum of those for ~�pi0 ;jþ1 and ~�pi0 ;j�1 as follows (Roache, 1976):

k2
i0 þ

2ĝi0

ðDyÞ2
>

ĝ2
i0

ðDyÞ2
þ 1

ðDyÞ2
: ðA9Þ

However, this condition does not hold for a large value of
ðĝi0 � 1Þ2=ðDyÞ2, which accounts for the instability of the expression
(A2).

In this work, the additional filtering is not applied to the pres-
sure-gradient term; it is applied only when taking the divergence
of the Navier–Stokes equation to obtain the Poisson equation.
The second derivative terms in the Poisson equation can be ex-
pressed as

@2p
@y2

i;j
¼ 1

Dy
�̂pi;jþ1 � �̂pi;j

Dy
�

�pi;j � �pi;j�1

Dy

 !
; ðA10Þ

which corresponds to the y derivative terms on the left-hand side of
Eq. (25). It is expressed in terms of the Fourier components as

ĝi0

ðDyÞ2
~�pi0 ;jþ1 � k2

i0 þ
ĝi0 þ 1

ðDyÞ2

" #
~�pi0 ;j þ

1

ðDyÞ2
~�pi0 ;j�1: ðA11Þ

In this case, the condition for the coefficients

k2
i0 þ

ĝi0 þ 1

ðDyÞ2
>

ĝi0

ðDyÞ2
þ 1

ðDyÞ2
; ðA12Þ

holds for an arbitrary value of ĝi0 . Therefore, the Poisson equation
with Eq. (A10) can be solved.

Next, we explain the stability requirement for the diffusion
terms. Here, for simplicity we consider the Euler scheme for time
marching and treat only the molecular viscosity which is constant
in space. If the additional filtering is applied not only to the evalu-
ation of the viscous stress but also to the gradient of the stress in
the Navier–Stokes equation, the diffusion term in the y direction
as well as the time derivative term can be written as

�unþ1
i;j � �un

i;j

Dt
¼ m

1
Dy

^̂�un
i;jþ1 � �̂un

i;j

Dy
�

�̂un
i;j � �un

i;j�1

Dy

0@ 1A; ðA13Þ

where the superscript n stands for the time step. It is expressed in
terms of the Fourier components as

~�unþ1
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i0 ;j

Dt
¼ m

1
Dy

ĝ2
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�
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i0 ;j � ~�un
i0 ;j�1

Dy

 !
: ðA14Þ

Moreover, we apply the von Neumann stability analysis by using
the Fourier transform in the y direction (Roache, 1976)

~�un
i0 ;j ¼ un exp½IkyjDy�; ðA15Þ

where un is the amplitude function at time step n. The diffusion
equation (A14) can be written as

unþ1 � un

Dt
¼ m
ðDyÞ2

½ĝ2
i0 expðIkyDyÞ � 2ĝi0 þ expð�IkyDyÞ�un; ðA16Þ

The amplification factor Að¼ unþ1=unÞ can then be given by

A ¼ 1� mDt

ðDyÞ2
½2ðĝ2

i0 þ 1Þ sin2 h� ðĝi0 � 1Þ2 � 2Iðĝ2
i0 � 1Þ sin h cos h�;

ðA17Þ

where h ¼ kyDy=2. The magnitude j A j should be less than unity for
stability. However, If the value of h is so small that sin h can be ne-
glected in Eq. (A17), the factor A can be written as

A ¼ 1þ mDt

ðDyÞ2
ðĝi0 � 1Þ2: ðA18Þ
Since this factor is always greater than unity for arbitrary Dt, the
stability requirement cannot be satisfied. For the Crank–Nicolson
scheme the factor A is given by

A ¼ 1þ mDt

2ðDyÞ2
ðĝi0 � 1Þ2

" #,
1� mDt

2ðDyÞ2
ðĝi0 � 1Þ2

" #
; ðA19Þ

which is also greater than unity. The diffusion Eq. (A13) cannot be
solved even using the Crank–Nicolson scheme.

In this work, the additional filtering is not applied when evalu-
ating the gradient of the viscous stress in the Navier–Stokes equa-
tion as follows:

�unþ1
i;j � �un

i;j

Dt
¼ m

1
Dy

�̂un
i;jþ1 � �un

i;j

Dy
�

�̂un
i;j � �un

i;j�1

Dy

 !
: ðA20Þ

This equation can be rewritten as

unþ1 � un

Dt
¼ m
ðDyÞ2

½ĝi0 expðIkyDyÞ � ðĝi0 þ 1Þ

þ expð�IkyDyÞ�un: ðA21Þ

The amplification factor is then given by

A ¼ 1� mDt

ðDyÞ2
½2ðĝi0 þ 1Þ sin2 h� 2Iðĝi0 � 1Þ sin h cos h�: ðA22Þ

In this expression, there is no positive term like ðĝi0 � 1Þ2. Therefore,
if Dt is small enough, the magnitude j A j can be less than unity; the
stability requirement can be satisfied.

The instability for the pressure-gradient and diffusion terms
seems to be caused by the application of the filtering twice without
defiltering because Eqs. (A9) and (A18) both involve ĝ2

i0 . We expect
that if some defiltering procedure corresponding to ĝ�1

i0 is applied
using Eq. (19) in future work, this difficulty can be overcome and
the additional filtering can fully be applied to the pressure-gradi-
ent and diffusion terms.
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